Balanced Splittable Hadamard Matrices

Jonathan Jedwab

Department of Mathematics, Simon Fraser University

Joint work with

Shuxing Li and Sam Simon, Simon Fraser University

Shuxing Li

Outline

- Hadamard matrix
- Motivation and constructions
- Hadamard Matrix Conjecture
- Balanced splittable property
- Motivation
- Associated strongly regular graph
- Parameter classes
- Partial difference sets
- Multiple submatrices

Hadamard Matrix

Order 8 Hadamard matrix

dot product of every two distinct columns is 0
matches = # non-matches

Jacques Hadamard 1865 – 1963 James Sylvester 1814 – 1897

Hadamard Matrix

Order *n* Hadamard matrix *H*: entries in {+1, -1}, pairwise orthogonal columns

$$\star \quad H^{\mathsf{T}}H = n I_n$$

* implies $HH^{T} = nI_{n}$, so also pairwise orthogonal rows

Examples

Order 4 Hadamard matrix

Motivation

 Theoretical importance: Hadamard matrices solve the maximum determinant problem for complex-valued matrices whose entries have magnitude at most 1

- Practical importance: applications include
 - statistical designs: analyse experimental data to determine which quantities depend on others
 - * coding of digital signals: make messages easy to recover
 - * cryptography: make messages difficult to recover

Hadamard Matrix

- Order *n* Hadamard matrix *H*: entries in {+ I, I}, pairwise orthogonal columns
 - $\star \quad H^{\mathsf{T}}H = n I_n$

* implies $HH^{T} = nI_{n}$, so also pairwise orthogonal rows

- If n > 2, then n = 4r for some positive integer r
 - * Conjecture (Paley 1933). There is a Hadamard matrix of order 4r for every positive integer r

Raymond Paley 1907 – 1933

Hadamard 1893: Product

Hadamard matrix order *m*

Hadamard matrix order *n*

Hadamard matrix order *mn*

Hadamard Matrix Conjecture

Date	Order of smallest unsolved case becomes	Construction of previous smallest unsolved case by	Using computer?
1867	12	Sylvester	No
1893	28	Hadamard	No
1933	92	Paley	No
1962	116	Baumert, Golomb, Hall	Yes
1966	188	Baumert	Yes (?)
1975	268	Turyn	Yes
1985	428	Sawade	Yes
2005	668	Kharaghani, Tayfeh-Rezaie	Yes

Solomon Golomb 1932 – 2016, Leonard Baumert, Marshall Hall Jr. 1910 – 1990

Balanced Splittable

balanced splittable (16, 7, 3, -1) Hadamard matrix

Balanced Splittable

balanced splittable (n, ℓ, a, b) Hadamard matrix

Balanced Splittable

- "Balanced splittable" coined by Kharaghani & Suda (2019)
- Earlier equivalent formulations using
 - real flat equiangular tight frames
 - regular spherical two-distance sets
 - two-distance tight frames

For which parameters (n, ℓ, a, b) is there a balanced splittable Hadamard matrix ?

Motivation

- Theoretical importance: balanced splittable property identifies subclass of Hadamard matrices with additional structure
 - * connections to strongly regular graphs
 - * new insights for Hadamard Matrix Conjecture ?

- Practical importance: new opportunities for advantageous signal design
 - dot products of columns of submatrix are tightly controlled

Associated Strongly Regular Graph

I 2 3 4 5 6 7 8 9 A B C D E F G

dot product of distinct columns is 3 or -1

(16,6,2,2) strongly regular graph

Associated Strongly Regular Graph

I 2 3 4 5 6 7 8 9 A B C D E F G

dot product of distinct columns is 3 or -1

(16,9,4,6) strongly regular graph

Associated Strongly Regular Graph

I 2 3 4 5 6 7 8 9 A B C D E F G

Parameter Classes

- Jedwab, Li, Simon (2022+). Six classes of parameters (n, ℓ, a, b) of balanced splittable Hadamard matrix, according to
 - $\star \quad \ell = 2 ?$
 - \star b = -a ?
 - * $H_1 1 = 0$?
 - * is associated strongly regular graph primitive ?

Parameter Classes

- For example, for $\ell > 2$ and $b \neq -a$ and $H_1 \mathbf{1} = \mathbf{0}$:
 - * if associated graph *G* primitive then

$$n = \frac{(\ell - a)(\ell - b)}{\ell + ab} \qquad \qquad \ell \equiv a \equiv b \pmod{4}$$

- $\frac{\ell-b}{b-a}$, $\frac{n}{b-a}$, $\frac{n(b+l)}{2(b-a)}$, $\frac{nb(b+l)}{(b-a)^2}$ are integers
- * if G not primitive then $(n, \ell, a, b) = (4rs, 4s 1, 4s 1, -1)$ for integers r and s, and G is disjoint union of 4s copies of complete graph K_r

(16, 7, 4, 2) partial difference set in \mathbb{Z}_2^4

balanced splittable (16, 7, 3, -1) Hadamard matrix

• Can partition the elements of \mathbb{Z}_2^4 into 6 subsets: the zero element, and five (16, 3, 2, 0) partial difference sets

• Can partition the elements of \mathbb{Z}_2^4 into 6 subsets: the zero element, and five (16, 3, 2, 0) partial difference sets

• Every union of the 6 subsets is also a partial difference set !

partial difference set in \mathbb{Z}_2^4

(16, 4, 4, 0)

balanced splittable Hadamard matrix

(16, 4, 4, 0)

dot product of distinct columns is 4 or 0

(16, 7, 4, 2)

(16, 9, 4, 6)

balanced splittable Hadamard matrix

$$(16, 7, 3, -1)$$

(16, 9, 1, -3)

of distinct columns is | or –3

Jedwab, Li (2021). Polhill (2009). Polhill Davis Smith (2013).
 Construct packings of partial difference sets by partitioning the elements of Z₂^{2m} into r+1 subsets: the zero element, and r partial difference sets so that every union of the r+1 subsets is also a partial difference set

 Jedwab, Li, Simon (2022+). Use to construct Hadamard matrices that are balanced splittable with respect to multiple submatrices simultaneously