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Is this random?
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... or is this more random?
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Pseudorandom sequences

generated by deterministic algorithms which simulate
randomness

not random at all but guarantee certain desirable features
(depending on application)

mathematical/cryptographic point of view: as many desirable
features as possible

many different measures: linear complexity, correlation,
normality, ...
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Thue-Morse sequence

t0 = 0, tn =

{
tn/2 if n is even,

1− t(n−1)/2 if n is odd,
n = 1, 2, . . .

tn is the sum of digits of n modulo 2, n = 0, 1, . . .

automatic sequence generated by the Thue-Morse automaton

A/0 B/1

1

1

00

start

t0 . . . t11 = 011010011001 . . .
t11 = 1− t5 = t2 = t1 = 1− t0 = 1
or 11 = 8 + 2 + 1 = (1011)2: t11 = 1 + 0 + 1 + 1 ≡ 1 mod 2
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The first 4096 sequence elements

Figure: The first 4096 elements of the Thue-Morse sequence split into 64
rows of each 64 sequence elements. Zeros are represented by white, ones
are represented by black.
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Features

pseudorandom/desirable:

large Nth linear complexity

large Nth maximum-order complexity

balance

small well-distribution measure

not pseudorandom/undesirable:

very large correlation measure of order 2

very small expansion complexity

there are short patterns such as 000 and 111 which do not
appear in the sequence

subword complexity is only linear
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Subsequences

may destroy the non-random structure of the original sequence

may keep the desirable features of pseudorandomness

promising candidates:

along squares, cubes, bi-squares, ... or along the values of any
polynomial f of degree at least 2 with f (N0) ⊂ N0

along primes

along the Piatetski-Shapiro sequence ⌊nc⌋, 1 < c < 2,

along geometric sequences such as 3n
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Thue-Morse sequence along squares

inherits:

large maximum-order complexity and thus a large linear
complexity

asymptotically balanced/simply normal

in contrast to the original sequence:

unbounded expansion complexity

normal, that is, asymptotically each pattern appears with the
right frequency in the sequence

Roughly speaking: looks much more random than the original
sequence.
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Figure: The first 4096 elements of the Thue-Morse sequence along squares
split into 64 rows of each 64 sequence elements. Zeros are represented by
white, ones are represented by black.
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Linear complexity

The Nth linear complexity L((sn),N) of a sequence (sn) over
F2 = {0, 1} is the length L of a shortest linear recurrence relation
satisfied by the first N elements of (sn),

sn+L ≡ cL−1sn+L−1 + · · ·+ c1sn+1 + c0sn mod 2, 0 ≤ n ≤ N − L− 1,

for some c0, . . . , cL−1 ∈ F2.
linear complexity: L((sn)) = supN≥1 L((sn),N)

expected value N
2
+ O(1) (Gustavson, 1976)

deviations of magnitude logN must appear for infinitely many N
(Niederreiter, 1988)

L((sn)) <∞ ⇐⇒ (sn) ultimately periodic
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Linear complexity of Thue-Morse sequence

L((tn),N) = 2

⌊
N + 2

4

⌋
(Mérai/W., 2018)

Proof of L((tn),N) ≥ N−1
2

:

(tn) is not (ultimately) periodic

generating function G (x) =
∑∞

n=0 tnx
n is not rational

G (x) is algebraic over F2(x):
h(x ,G (x)) := (x + 1)3G (x)2 + (x + 1)2G (x) + x = 0
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L∑
ℓ=0

cℓtn+ℓ = 0 for 0 ≤ n ≤ N − L− 1

f (x) =
L∑
ℓ=0

cℓx
L−ℓ and g(x) =

L−1∑
m=0

(
L∑

ℓ=L−m

cℓtm+ℓ−L

)
xm

f (x)G (x) ≡ g(x) mod xN

f (x)2h(x , g(x)/f (x)) = (x + 1)3g(x)2 + (x + 1)2f (x)g(x) + xf (x)2

= K (x)xN , K (x) ̸= 0

2L+ 1 ≥ N

A.Winterhof (RICAM) Pseudorandom Sequences IWSDA’22 August 3, 2022 12 / 34



Christol’s theorem

Let

G (x) =
∞∑
n=0

snx
n

be the generating function of the sequence (sn) over Fq. Then (sn) is
q-automatic if and only if G (x) is algebraic over Fq(x), that is, there
is a polynomial h(x , y) ∈ Fq[x , y ] \ {0} such that h(x ,G (x)) = 0.
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Linear complexity of automatic sequences
Mérai/W., 2018:
Let q be a prime power and (sn) be a q-automatic sequence over Fq

which is not ultimately periodic. Let
h(x , y) = h0(x) + h1(x)y + · · ·+ hd(x)y

d ∈ Fq[x , y ] be a non-zero
polynomial h(x ,G (x)) = 0 with no rational function r(x) ∈ Fq(x)
satisfying h(x , r(x)) = 0.
Put

M = max
0≤i≤d

{deg hi − i}.

Then we have

N −M

d
≤ L((sn),N) ≤ (d − 1)N +M + 1

d
.

Upper bound comes from (Berlekamp-Massey algorithm)
L((sn),N + 1) ∈ {L((sn),N),N + 1− L((sn),N)}.
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(not ultimately periodic) automatic sequences have large Nth
linear complexity

Thue-Morse sequence: L((tn),N) = N
2
+ O(1)

never
∣∣L((tn),N)− N

2

∣∣ ≈ logN

idea does not work for (tn2)

Next we study a finer measure than linear complexity.
As a consequence we get

L((tn2),N) ≥ cN1/2

for some c > 0.
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Figure: Nth linear complexity of the Thue-Morse sequence along squares.

Problem
Prove that

L((tn2),N) =
N

2
+ o(N).
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Maximum order complexity
The Nth maximum order complexity M((sn),N) is the smallest
positive integer M with

sn+M = f (sn+M−1, . . . , sn), 0 ≤ n ≤ N −M − 1,

for some mapping f : FM
2 → F2.

L((sn),N) ≥ M((sn),N)

Jansen, 1990: expected value ≈ logN

(sn, sn+1, . . . , sn+M−2) = (sm, sm+1, . . . , sm+M−2),
sn+M−1 ̸= sm+M−1 for some 0 ≤ n < m ≤ N −M
=⇒ M((sn),N) ≥ M

C2((sn),N) ≥ M((sn),N)− 1

Chen/Gomez/Gomez/Tirkel, 2022:
C2((sn),N) ≥ N − 2M((sn),N) + 1

desirable: logN ≪ M((sn),N) = o(N)
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Maximum order complexity of Thue-Morse

sequence

Sun/W., 2019:

M((tn),N) = 2ℓ + 1, where ℓ =

⌈
log(N/5)

log 2

⌉
, N ≥ 4.

N
5
+ 1 ≤ M((tn),N) ≤ 2N−1

5
+ 1

proof with Walnut (J. Shallit, personal communication)

M((tn),N) too large: implies very large correlation measure of
order 2 (aperiodic autocorrelation)
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Maximum order complexity of Thue-Morse

sequence along squares
Sun/W., 2019:

L((tn2),N) ≥ M((tn2),N) ≥
√

2N

5
, N ≥ 21.

similar bounds for Rudin-Shapiro sequence, pattern sequences
with the all 1 pattern
(Rudin-Shapiro sequence (rn):

rn =
∞∑
i=0

nini+1, n =
∞∑
i=0

ni2
i , ni ∈ {0, 1})

Popoli, 2020: extension to polynomials of degree ≥ 2
lower bound of order of magnitude N1/d
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Correlation measure of order k
For k ≥ 1, the Nth correlation measure of order k of a binary
sequence (sn) is

Ck((sn),N) = max
M,D

∣∣∣∣∣
M−1∑
n=0

(−1)sn+d1 · · · (−1)sn+dk

∣∣∣∣∣ ,
where the maximum is taken over all D = (d1, d2, . . . , dk) with
integers satisfying 0 ≤ d1 < d2 < · · · < dk and 1 ≤ M ≤ N − dk .

introduced by Mauduit and Sárközy, 1997

Alon et al., 2007: expected value Θ

(√
N log

(
N
k

))
,

2 ≤ k ≤ N/4

C2((sn),N) ≥ M((sn),N)− 1

Mauduit/Sárközy, 1998: C2((tn),N) > N
12
, N ≥ 5

C2((tn),N) ≥ M((tn),N)− 1 ≥ N
5
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Correlation measure of order 2 of Thue-Morse

sequence along squares

Figure: The Nth second order correlation measure of the Thue-Morse
along squares.
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Problem
For fixed k = 2, 3, . . . show that

Ck((tn2),N) = o(N).
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Expansion complexity

Let (sn) be a sequence over Fq with generating function

G (x) =
∞∑
n=0

snx
n.

For a positive integer N , the Nth expansion complexity E ((sn),N) of
(sn) is E ((sn),N) = 0 if s0 = · · · = sN−1 = 0 and otherwise the least
total degree of a non-zero polynomial h(x , y) ∈ Fq[x , y ] such that

h(x ,G (x)) ≡ 0 mod xN . (1)

E ((sn)) = sup
N≥1

E ((sn),N)

is the expansion complexity of (sn).
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Properties

introduced by C. Diem, 2012

E ((sn)) <∞ ⇐⇒ (sn) is automatic (Christol)

E ((tn)) = 5: h(x , y) = (x + 1)3y 2 + (x + 1)2y + x

E ((tn2)) = ∞
typical value E ((sn),N) ≈ N1/2 (Gomez/Mérai, 2020)

E ((sn),N) ≤ min{L((sn),N) + 1,N − L((sn),N) + 2}
(Mérai/Niederreiter/W., 2017)
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Expansion complexity of (tn2)

Figure: The Nth expansion complexity of the Thue-Morse sequence along
squares.
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Subword complexity

For a sequence (sn) over the alphabet ∆ the subword complexity
p((sn), k) is the number of distinct subsequences of length k .

1 ≤ p((sn), k) ≤ |∆|k

(sn) automatic (not ultimately periodic): p((sn), k) is of order of
magnitude k
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Normality

A sequence (sn) is called normal if for any fixed length k and any
pattern e ∈ ∆k

#{0 ≤ n < N : (sn, sn+1, . . . , sn+k−1) = e}
N

→ 1

|∆|k
,

as N → ∞.

(tn2) is normal (Drmota/Mauduit/Rivat, 2019)

open: Is (tf (n)) normal for deg(f ) ≥ 3?

p((tn2), k) = 2k

implies small correlation of fixed order with bounded lags
d1 < . . . < dk ≤ B
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Analogs for finite fields

For a prime p and q = pr with r ≥ 2 let (β1, . . . , βr ) be an ordered
basis of Fq over Fp.

Thue-Morse function:

T

(
r∑

i=1

xiβi

)
=

r∑
i=1

xi , x1, . . . , xr ∈ Fp

Rudin-Shapiro function

R

(
r∑

i=1

xiβi

)
=

r−1∑
i=1

xixi+1, x1, . . . , xr ∈ Fp
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Balance of Thue-Morse function

Dartyge/Sárközy, 2013 (using the Weil bound):
Let f ∈ Fq[x ] be of degree d with gcd(d , q) = 1. Then for all
c ∈ Fp, we have

Nc :=
∣∣#{ξ ∈ Fq : T (f (ξ)) = c} − pr−1

∣∣ ≤ (d − 1)pr/2.

Sketch of Proof. T (f (ξ)) = Tr(
r∑

i=1

δi︸ ︷︷ ︸
=:δ ̸=0

f (ξ)), {δ1, . . . , δr} dual basis

Nc =
1

p

∑
a∈Fp

∑
ξ∈Fq

ψp(Tr(aδf (ξ))− c)︸ ︷︷ ︸
ψq(aδf (ξ)−η)

,

ψu additive canonical character of Fu
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Normality

Makhul/W., 2022:
Assume 1 ≤ d < p and s ≤ d . For any polynomial f ∈ Fq[x ] of
degree d and any pairwise distinct α1, . . . , αs ∈ Fq and any
c1, . . . , cs ∈ Fp we have∣∣#{ξ ∈ Fq : T (f (ξ + αi)) = ci , 1 ≤ i ≤ s} − pr−s

∣∣ ≤ (d − 1)pr/2.
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Balance of Rudin-Shapiro function

Dartyge/Mérai/W., 2021 (using Hooley-Katz bound):
Let f ∈ Fq[x ] be of degree d with gcd(d , q) = 1. Then for all
c ∈ Fp, we have∣∣#{ξ ∈ Fq : R(f (ξ)) = c} − pr−1

∣∣ ≤ Cd ,rp
(3r+1)/4,

where the constant Cd ,r depends only on the degree d of f and r .

Weil fails (degree (as univariate polynomial) too large)

Deligne fails ((multivariate) polynomial has singular points)

Hooley-Katz is generalization of Deligne for non-singular
polynomials
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The Hooley-Katz Theorem, 1991
We denote by Fp the algebraic closure of Fp.
The (affine) singular locus L(F ) of a polynomial F over Fp in r
variables is the set of common zeros in Fp

r
of the polynomials

F ,
∂F

∂X1
, . . . ,

∂F

∂Xr
.

Let Q be a polynomial over Fp in r variables of degree D ≥ 1 such
that the dimensions of the singular loci of Q and its homogeneous
part QD of degree D satisfy

max{dim(L(Q)), dim(L(QD))− 1} ≤ s.

Then the number N of zeros of Q in Fr
p satisfies∣∣N − pr−1

∣∣ ≤ CD,rp
(r+s)/2.

s = −1: Deligne
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Problem
Study the normality of the Rudin-Shapiro function at f (x). Namely,
show that

#{ξ ∈ Fq : R(f (ξ + αi)) = ci , 1 ≤ i ≤ s}
pr−s

→ 1 as p → ∞

for some s ≥ 2 and any f ∈ Fq[x ] of fixed degree.
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Further reading

L. Mérai, A. Winterhof, Pseudorandom sequences derived from
automatic sequences. Cryptogr. Commun. 14 (2022), no. 4,
783–815.

Thank you for your attention!
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